

Your 7	Logo SPREAD Structura		Client Client Mart		<u>3 of 2</u>
	Carlo S		Client: <u>Client No 1</u> cation: <u>Location No 1</u>		
Your Comp	any Name here		ide by: CS	Date: 25/05/2019	Job No: 1
Company ad mail@doma	ddress		ecked: <u>CS</u>	Revision: CS	
MATERIAL	STRENGTHS				Reference clauses:
Steel streng	gth				BS EN 1993-1-1
	the nominal values of the yield si m the product standard. Where a	,			NA. 2.4
6 275 (EN 1	0025-2)				EN 10025-2
⁼ or t ≤ 16 m	m	f _y = R _{eH} =	275 N/mm²		Table 7
=or 16 mm <	< t ≤ 40 mm	f _y = R _{eH} =	265 N/mm²		
For 3 mm ≤	t ≤ 100 mm	f _u = R _{eH} =	410 N/mm²		
Hence:					
Beam yield s	strength	f _{y,b} =	275 N/mm²		
Beam ultima	te strength	$f_{u,b} =$	410 N/mm²		
Column yiel	d strength	f _{y,c} =	265 N/mm²		
Column ultin	nate strength	$f_{u,c} =$	410 N/mm²		
End plate yie	eld strength	$f_{y,p} =$	265 N/mm²		
End plate ul	timate strength	f _{u,p} =	410 N/mm ²		
Bolt streng	th				EN 1993-1-8
Nominal yiel	d strength	f _{yb} =	640 N/mm²		Table 3.1
Nominal ultii	mate strength	f _{ub} =	800 N/mm²		
PARTIAL F	ACTORS FOR RESISTANCE				EN 1993-1-1
Structural s					Table 2.1
/ _{M0} =	1,00				(see NA)
/ _{M1} =	1,00				
/ _{M2} =	1,10				
Parts in cor	nnection				Table 2.1
/ _{M2} =	1,25 (bolts, welds, plates	in bearing).			(see NA)

Your	EUROCODES SPREADSHEETS Structural Design		Project No 1		Sheet: <u>5 of 23</u>
			Client No 1 Location No 1		
Your Company Name here Company address			CS	Date: 25/05/2019	Job No: <u>1</u>
mail@domain.com	C	hecked:	CS	Revision: <u>CS</u>	
$M_{pl,1,Rd} = \frac{0.25 \sum I_{eff,1} \ t_{fc}^2 f_{y,c}}{\gamma_{M0}} =$	[0,25 x 210 x (20,5) ² x 265]/1,00	= 5847 x	x 10³ Nmm = 5,85 kNm		
Diameter of the washer (for M2	4 non preloaded class 8.8 bolts):				
d _w = 44 mm					
$e_w = d_w/4 = (44)/4 = 11 \text{ mm}$					
Therefore,					
_ (8n-2e _w)M _{pl1Rd}					
$F_{T,1,Rd} = \frac{(m + m) p_{1,1,Rd}}{2mn - e_w(m + n)} =$	[(8 x 41,8 - 2 x 11) x 5847 x 10 ³	J/{10° x [2	2 x 33,4 x 41,8 – 11 x (33,4 + 41,8)]} = 928,1 kN	
Mode 2 resistance					
For Mode 2 $2M \rightarrow n \sum E$					
$F_{T,2,Rd} = \frac{2W_{pl,2,Rd} + 11 \sum T_{t,Rd}}{m+n} =$	[2 x (6487 x 10 ³) + 41,8 x 406,7	x 10³)/(33	3,4 + 41,8) = 398,4 kN		EN 1993-1-18 Table 6.2
where:					
$M_{pl,2,Rd} = \frac{0.25 \sum l_{eff,2} \ t_{rc}^2 f_{y,c}}{\gamma_{M0}} =$	[0,25 x 233 x (20,5)² x 265]/1 = 6	6487 x 10)³ Nmm = 6,49 kNm		
$\Sigma F_{t,Rd}$ is the total value of $F_{t,Rd}$ f	or all the bolts in the row, where:				
⊢ k₂fubA₅ 0.9fubA₅	(0,9 x 800 x 353)/1,25 = 203,3 x	10 ³ N = 2	203 3 kN (for a single h	olt)	EN 1993-1-18
$F_{t,\mathrm{Rd}} = \frac{\gamma_{\mathrm{M2}}}{\gamma_{\mathrm{M2}}} =$	(0,9 x 600 x 555)/1,25 - 203,5 x	10 11 - 2			Table 3.4
For 2 bolts in the row $\sum F_{t,Rd}$	= 2 x 203,3 x 10 ³ = 406,7 x 10 ³ N	N = 406,7	' kN		
Mode 3 resistance (bolt failure)					
$F_{T,3,Rd} = \sum F_{t,Rd} = 406,7 \text{ k}$	Ν				EN 1993-1-18 Table 6.2
Resistance of column flange in	bending				
$F_{t,fc,Rd} = min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}]$	Rd] = min[928,1; 398,4; 406,7] =	398,4 kN			EN 1993-1-18 6.2.4.1(6)
Column web in transverse te	nsion				
The design resistance of an un	stiffened column web to transverse	tension is	s determined from:		EN 1993-1-18
					6.2.6.3(1)
$F_{t,wc,\text{Rd}} = \frac{\omega b_{\text{eff},t,wc} t_{wc} f_{y,wc}}{\gamma_{\text{MO}}}$					Eq. (6.15)
	at allows for the interaction with she	ear in the	column web panel.		

Your Logo	Project:	Project No 1		Sheet:
Structural Design	Client:	Client No 1		<u>6 of 2:</u>
Carlo Sigmund	Location:	Location No 1		
Your Company Name here	Made by:	CS	Date: 25/05/2019	Job No: <u>1</u>
Company address mail@domain.com	Checked:	CS	Revision: CS	
Trasformation parameter $\beta = 0,0$ [-] \implies Reductio	n factor:	$0 \le \beta \le 0.5 \rightarrow \omega = 1,00$		EN 1993-1-8 Table 5.4
Here, as $\min[F_{T,1,Rd}; F_{T,2,Rd}] = [928,1; 398,4] = 398,4 \text{ kN}$				Table 6.3
with:				
l _{eff,1} = 210 mm				
l _{eff,2} = 233 mm				
for a bolted connection the effective width of the column web in te	ension is co	onsidered to be:		
b _{eff,t,wc} = 233 mm.				
$f_{y,wc} = f_{y,c} = 265 \text{ N/mm}^2$				
ω = 1,00 [-]				
Thus,				
$F_{t,wc,Rd}$ = [(1,00 x 233 x 12,8 x 265)/1,00]/10 ^s = 790,4 kN				
End plate in bending				STEP 1
Bolt row 1 is outside the tension flange of the beam. The key dim	ensions for	the T-stub are shown below		EN 1993-1-8 Figure 6.10
$\begin{array}{c} e_{p} & e_{p} \\ + & + \\$				
The values of m_x , e_x , and e for the T-stub are:				
$e = e_p = 75 \text{ mm}$				
e _x = 50 mm				
$m_x = x - 0.8s_f = 40 - 0.8 \times 12 = 30.4 \text{ mm}$				
For Mode 1, $I_{\text{eff},1}$ is the lesser of $I_{\text{eff},\text{nc}}$ and $I_{\text{eff},\text{cp}}$				EN 1993-1-8
	x 30,4 + 10	00); (π x 30,4 + 2 x 75)] = min[191; 196; 246] = 191 mm	Table 6.6
I _{eff,nc} = min[4m _x + 1.25e _x ; e + 2m _x + 0.625e _x ; 0.5b _p ; 0.5w + 2m _x +	0.625e _x] =			EN 1993-1-8
		00 + 2 + 20 4 + 0 625 + 501 -		Table 6.6
min[(4 x 30,4 + 1.25 x 50); (75 + 2 x 30,4 + 0.625 x 50); (0.5 x 25	50); (0.5 x 1	00 + 2 x 30,4 + 0.625 x 50)] =		

Your Logo EUROCODES	Project: Project No 1		Shee
Structural Design	Client: Client No 1		<u>7 of 2</u>
Carlo Sigmund	Location: Location No 1		
Your Company Name here	Made by: CS	Date: 25/05/2019	Job No: 1
Company address mail@domain.com	Checked: CS	Revision: CS	
l _{eff,1} = min[l _{eff,nc} ; l _{eff,cp}] = min[125; 191] = 125 mm			
For Mode 2, $I_{eff,2} = I_{eff,nc} = 125 \text{ mm}$			
Mode 1 resistance			
For Mode 1 failure, using Method 2:			EN 1993-1-8 Table 6.2
$F_{T,LRd} = \frac{\left(8n - 2e_{w}\right)M_{pLLRd}}{2mn - e_{w}\left(m + n\right)}$			
where:			
$n = e_{min} = min[e_x; 1.25m_x] = min[50; 1.25 \times 30,4] = 38,3$	3 mm		
m = m _x = 30,4 mm			Sheet 6
e _w = 11,0 mm			Sheet 5
$f_y = f_{y,p} = 265 \text{ N/mm}^2$			
$t = t_p = 25 \text{ mm}$			
$M_{pl,1Rd} = \frac{0.25 \sum l_{eff,1} t_p^2 f_{y,p}}{\gamma_{M0}} = (0.25 \text{ x } 125 \text{ x } 25^2 \text{ x } 265)/1 = 5$	5.176 x 10³ = Nmm = 5,2 kNm		
$F_{T,1Rd} = \frac{(8n - 2e_w)M_{p,1Rd}}{2mn - e_w(m+n)} = (8 \times 38,3 - 2 \times 11,0) \times 5.17$	76 x 10³/{10³ x [2 x 30,4 x 38,3 - 1 ⁻	1,0 x (30,4 + 38,3]} = 936 kN	
Mode 2 resistance			EN 1993-1-8
$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$			Table 6.2
where:			
$M_{pl,2,Rd} = \frac{0.25 \sum l_{eff,2} t_p^{2f} l_{y,p}}{\gamma_{M0}} = (0.25 \times 125 \times 25^2 \times 265)/1 = 100$	5.176 x 10³ = Nmm = 5,2 kNm		
l _{eff,2} ⁼ 125 mm			
$\Sigma F_{t,Rd} = 407 \times 10^3 \text{ N} = 407 \text{ kN}$			Sheet 5
Therefore, $F_{T,2,Rd}$ = (2 x 5.176 x 10 ³ + 38,3 x 407 x 10 ³).	/{10³ x (30,4 + 38,3)} = 377 kN		
Mode 3 resistance (bolt failure)			
$F_{T,3,Rd} = \sum F_{t,Rd} = 407 \text{ kN}$			
Resistance of end plate in bending			
$F_{t,ep,Rd} = min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = min[936; 377; 40]$	97] = 377 kN		EN 1993-1-8 6.2.4.1(6)
Beam web in tension			
As bolt row 1 is in the extension of the end plate, the resista	ance of the beam web in tension is	not applicable tothis bolt row.	

EUROCODES	Project:	Project No 1		Sheet:
SPREADSHEETS Structural Design				8 of 23
	-	Client No 1		
Carlo Sigmund	Location:	Location No 1		
Your Company Name here	Made by:	CS	Date: 25/05/2019	Job No: _1
Company address mail@domain.com	Checked:	CS	Revision: <u>CS</u>	
SUMMARY: RESISTANCE OF T-STUB FOR BOLT ROW 1				
Resistance of bolt row 1 is the smallest value of:				
Column flange in bending F _{t,fe,Rd}	i = 398 kN			
Column web in tension: F _{t.wc,R}	_d = 790 kN			
End plate in bending: F _{tep,R}	_d = 377 kN			
Therefore, the resistance of bolt row 1 is:				
F _{t1,Rd} = min[F _{t,fc,Rd} ; F _{t,wc,Rd} ; F _{t,ep,Rd}] = min[398; 790; 377]	= 377 kN			
BOLT ROW 2				
Firstly, consider row 2 alone.				
Column flange in bending				
The resistance of the column flange in bending is as calculate	ed for bolt row 1	(Mode 2):		STEP 1
F _{t.fc,Rd} = 398 kN				
				Sheet 5
Column web in transverse tension				STEP 1B
The column web resistance to transverse tension will also be	as calculated for	or bolt row 1.		
Therefore:				
$F_{t,wc,Rd} = 790 \text{ kN}$				Sheet 6
End plate in bending				
Bolt row 2 is the first bolt row below the beam flange, conside	red as "first bolt	-row below tension f	lange of beam" in Table 6.6. The	STEP 1
key dimensions for the T-stub are as shown for the column fla			-	Sheet 4
0.8s _f				
P_{2-3}				
m				
$m = m_{p} = \frac{w - t_{wb} - 2 \cdot 0.8s_{w}}{2} = (100 - 10.1 - 2 \times 0.8 \times 8)$)/2 = 38,6 mm			
e = e _p = 75 mm				
$m_2 = R2 - t_{fb} - 0.8s_f = 60 - 15,6 - (0.8 \times 12) = 34,8 \text{ mm}$				
α is obtained from Figure 6.11 (reproduced in EN 1993-1-8, A	ppendix G as F	igure G.1)		
Parameters required to determine α : $\lambda_1 = \frac{m}{m+e}$ and	d $\lambda_{n} = \frac{m_{2}}{m_{2}}$			

Your Logo SPREADSHEETS Structural Design	Project: Project No 1		Shee
Carlo Sigmund	Client: <u>Client No 1</u> Location: <u>Location No 1</u>		
Your Company Name here	Made by: CS	Date: 25/05/2019	Job No: 1
Company address	Checked: CS	Revision: CS	
$\lambda_1 = 38,6/(38,6+75) = 0,34$			
$\lambda_2 = 34,8/(38,6+75) = 0,31$			
Thus, by interpolation (see EN 1993-1-8, Figure 6.11), α =	7,3 [-]		EN 1993-1-8 Figure 6.11
			Table 6.6
$I_{eff,cp} = 2\pi m = 2 \times \pi \times 38,6 = 242 \text{ mm}$			
$I_{\rm eff,nc} = \alpha m = 7,3 \times 38,6 = 283 \text{ mm}$			
I _{eff,2} = I _{eff,nc} = 283 mm			
$I_{eff,1} = min[I_{eff,cp}; I_{eff,nc}] = min[242; 283] = 242 mm$			
Mode 1 resistance			EN 1993-1-8 Table 6.2
For Mode 1, using Method 2:			
$F_{T,1,Rd} = \frac{(8n - 2e_{w})M_{pl,1,Rd}}{2mn - e_{w}(m+n)}$			
where:			SHEET 4
n = min[e _{min} ; 1.25m] = min[75; (1.25 x 38,6)] = 48,2 mm			SHEETS 5/2/3
e _w = 11,0 mm			
t _p = 25 mm			
f _{y.p} = 265 N/mm²			
$M_{pl,1Rd} = \frac{0.25\sum_{l_{eff,1}} t_p^2 f_{y,p}}{\gamma_{v,p}} = (0.25 \times 242 \times 25^2 \times 265)/1,00 =$	10,0 x 10³ x 10³ Nmm		
* NU			EN 1993-1-8
$F_{\text{T,IRd}} = \frac{(8n - 2e_{w})M_{\text{pl,IRd}}}{2mn - e_{w}(m + n)} = \qquad [(8 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 48,2 \text{ - 2 x } 11,0) \text{ x } 10^{s}]/[(2 \text{ x } 10^{s})]/[(2 \text{ x } $	x 38,6 x 48,2) - 11,0 x (38,6 +	48,2)] = 1.320 kN	Table 6.2 SHEET 5
w ()			SHEETS
Mode 2 resistance			
$F_{T,Rd} = \frac{2M_{pl,2,Rd} + n\sumF_{t,Rd}}{m + n}$			
m+n $F_{LRd} = 203 kN$			
$M_{pl2,Rd} = \frac{0.25 \sum l_{eff,2} t_p^2 f_{y,p}}{\gamma_{M0}} = (0,25 \times 283 \times 25^2 \times 265)/1,00 =$	11,7 x 10³ x 10³ Nmm		
$\Sigma F_{t,Rd} = 2 \times 203 = 407 \text{ kN}$			
$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = (2 \times 11,7 \times 10^{3} + 48,2 \times 407)/(3 \times 10^{3} + 10^{3} \times 10^{3})$	8,6 + 48,2) = 496 kN		
Mode 3 resistance (bolt failure)			
$F_{T,3,Rd} = \sum F_{l,Rd} = 407 \text{ kN}$			

Client:	Your	EUROCODES Proj	ect: Project No 1		Sheet:
Location: Location: Location: Location: Location: Very Company varieties: Made by: C3 Date: 25052019 Job No: f Index densities for the group of bots is: Made by: C3 Revision: C3 Mode 1 Example of the group of bots is: Mode 2 Example of the group of bots is: Example of the group of the group of bots is: Example of the group of the group of the group of the gr	77		ent: Client No 1		11 of 23
Year Company numbers Made by: <u>C3</u> Date: <u>25052079</u> Job No: <u>7</u> Company numbers Revision: <u>C3</u> Revision: <u>C3</u> EN 1933-14 The effective lengths for the group of bots is: Revision: <u>C3</u> Revision: <u>C3</u> The effective lengths for the group of bots is: Revision: <u>C3</u> FN 1933-14 Node 1 Table 6.4 Table 6.4 Ziver = 20mel Ziver: <u>Zumel = min(333, 410 = 333 mm</u> Table 6.4 Mode 1 resistance From <u>C2ment = 333 mm</u> Table 6.4 Mode 1 resistance From <u>C2ment = 333 mm</u> SHEET 4 Mode 1 resistance SHEET 4 SHEET 4 Neter: SHEET 4 SHEET 4 n = 33.4 mm SHEET 4 SHEET 5 Maxe = <u>C2X_m</u> , <u>C1me</u> = (0.25 x 333 x 20.5 ⁴ x 200)(1.00 = 9.27 x 10 ⁴ x 10 ⁴ (10 ⁴ x (2 x 33.4 x 41.8 - 11.0 x (33.4 + 41.8))] = 1.472 kN Mode 2 zmostance From <u>C1me</u> = (0.25 x 333 x 20.5 ⁴ x 200)(1.00 = 9.27 x 10 ⁴ x 10 ⁴ (10 ⁴ x (2 x 33.4 x 41.8 - 11.0 x (33.4 + 41.8))] = 1.472 kN Mode 2 zmostance From <u>C1me</u> = (0.25 x 333 x 20.5 ⁴ x 200)(1.00 = 9.27 x 10 ⁴ x 10 ⁴ (10 ⁴ x (2 x 30.4 x 41.8)] = 1.472 kN Mode 2 zmostance From <u>C1me</u> = (0.25 x 333 x 20.5 ⁴ x 200)(1.00 = 9.27 x 10 ⁴ x 10 ⁴ (10 ⁴ k 1.8) = 11.0 x (33.4 + 41.8)]] From S1.4 a 2.23 mm					
$ \begin{array}{c c c c c c } \hline Conversion variables for the group of boths is: \\ \hline Conversion Variables for the group of boths is: \\$					
The effective lengths for the group of bolts is: Mode 1 Due: = min(D2mex; Dueme) = min(333; 410) = 333 mm Mode 2: Duet = min(D2mex; Dueme) = min(333; 410) = 333 mm Mode 1 resistance From = 333 mm Mode 2 resistance From = 333 mm Mode 2 resistance From = 333 mm Mode 2 resistance From = 41.8 mm $a_{e} = 11.0 mm$ Muster = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{N_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)*1.00 = 9.27 x 10 ⁴ x 10 ⁵ Nmm From = $\frac{2e5\sum_{k} r_{e}^{4} f_{e}^{4}}{m_{e}}$ = (0.25 x 333 x 20.5* x 265)	Company address				Job No: <u>1</u>
Mode 1 EN 1993-1-4 Table 6.4 Status = Min(S2) Status = S2 min(S33, 410] = 333 mm Mode 2 Table 6.4 Status = S2 min = S33 mm Table 6.4 Mode 1 resistances Table 6.4 F1:m2 = $\frac{2m - e_{m}(m + n)}{m - e_{m}(m + n)}$ Table 6.2 where: SHEET 4 m = 33,4 mm SHEET 4 n = 41,8 mm SHEET 4 a_{v = 0} = 11,0 mm SHEET 5 M _{VDP =} = $\frac{265 \sum_{v=1}^{v-1} t_{v}^{+} t_{v}^{-} = (0.25 \times 333 \times 20.6^{v} \times 265)^{1.00} = 9.27 \times 10^{v} \times 10^{v} Nmm$ F1:m2 = $\frac{2m - e_{m}(m + n)}{T_{m}}$ SHEET 5 M _{VDP =} = $\frac{265 \sum_{v=1}^{v-1} t_{v}^{+} t_{v}^{-} = (0.25 \times 333 \times 20.6^{v} \times 265)^{1.00} = 9.27 \times 10^{v} \times 10^{v} Nmm$ F1:sec = $\frac{2m - e_{m}(m + n)}{T_{m}}$ SHEET 5 Mode 2 resistance F1:me = $\frac{203 M}{T_{m}} = \frac{(0.25 \times 333 \times 20.5^{v} \times 265)^{1.00} = 9.27 \times 10^{v} \times 10^{v} Nmm$ F1:sec = $\frac{2m + 5\sum T_{m}}{m + n}$ F1:sec = 2	mail@domain.com	Check	(CS)	Revision: <u>CS</u>	
Mode 1 Table 6.4 Star = min(333, 410) = 333 mm Table 6.4 Mode 2: Table 6.4 Stars = Stars = $333 mm$ Table 6.4 Mode 1: existence Table 6.4 Frame = $(6n - 2a_{a})M_{a,100}$ Table 6.2 where: Table 6.2 m = $33.4 mm$ SHEET 4 a = $41.8 mm$ SHEET 4 a = $41.8 mm$ SHEET 4 a = $41.8 mm$ SHEET 4 a = $252 \sum [a_{11}^{-1} \frac{b_{11}^{-1} a_{11}}{b_{11}^{-1} a_{12}} = (0.25 \times 333 \times 20.5^{0.2} \times 285) 1,00 = 9.27 \times 10^{0.2} \times 10^{0.2}$	The effective lengths for the gr	oup of bolts is:			EN 4002 4 9
Mode 2: Size $2 \sum_{k \le k} = 333 \text{ mm}$ Table 6.4 Mode 1 resistance Table 6.4 F: $_{1,0k} = \left(\frac{6n - 2a_{k}}{2mn - a_{k}}(m+n)\right)$ Table 6.2 where: Table 6.4 m = 33,4 mm SHEET 4 n = 41,8 mm SHEET 4 e_{v} = 11,0 mm SHEET 5 Mode 2. resistance SHEET 5 Mode 2. resistance SHEET 5 Mode 3. resistance SHEET 5 F: $_{1,0k} = \frac{60 - 2a_{k}}{mn} + \frac{b_{k} c_{k}}{n} = (0.25 \times 33 \times 20.5^{4} \times 205^{4})(00^{4} 9.27 \times 10^{4} \times 10^{4})(10^{4} \times 12 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)] = 1.472 \text{ KM}$ Mode 2. resistance F F: $_{1,0k} = \frac{2025 \sum_{k=1}^{k} \frac{c_{k}}{m_{k}} \frac{c_{k}}{n} = (0.25 \times 333 \times 20.5^{4} \times 205^{4})(10^{4} \times 12 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)] = 1.472 \text{ KM}$ Mode 2. resistance F F: $_{1,0w} = \frac{2025 \sum_{k=1}^{k} \frac{c_{k}}{m_{k}} \frac{c_{k}}{n} = (0.25 \times 333 \times 20.5^{4} \times 205^{4})(10^{4} = 9.27 \times 10^{4} \times 10^{3})(10^{4} \times 12 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)] = 1.472 \text{ KM}$ Mode 3. resistance (bod finduce) F F: $_{1,0w} = \frac{2025 \sum_{k=1}^{k} \frac{c_{k}}{m_{k}} \frac{c_{k}}{n} = (2 \times 9.27 \times 10^{4} \times 41.8 \times 13)(33.4 + 41.8) = 698 \text{ KM}$ FHET 5 Mode 3. resistance (bod finduce) F F F F F: $_{1,0w} = m(c_{1,1$	Mode 1				
$\begin{split} & \sum_{m_{1}} \sum_{m_{2}} \sum_{m_{1}} $	$\sum I_{eff,1} = min[\sum I_{eff,nc}; \sum I_{eff,cp}] =$	min[333; 410] = 333 mm			
Mode 1 resistance From = $\frac{(0n - 2n_{a})M_{a}m_{a}}{2mn - e_{a}(m + n)}$ Table 6.2 where: The = 3.3.4 mm SHEET 4 m = 3.3.4 mm SHEET 4 m = 4.18 mm SHEET 4 m =	Mode 2:				Table 6.4
$F_{1,86} = \frac{(8n - 2e_{1})M_{k2,104}}{2mn - e_{k}(m + n)}$ Table 6.2 where: m = 33.4 mm SHEET 4 $n = 41.8 mm$ SHEET 4 $e_{k} = 11.0 mm$ SHEET 5 $M_{k2,10e} = \frac{0.25\sum_{k=1}^{k}t_{k}^{k}f_{k}}{y_{k}} = (0.25 \times 333 \times 20.5^{p} \times 265)'1.00 = 9.27 \times 10^{k} \times 10^{k} N mm$ SHEET 5 $M_{k2,10e} = \frac{0.25\sum_{k=1}^{k}t_{k}^{k}f_{k}}{y_{k}} = (0.25 \times 333 \times 20.5^{p} \times 265)'1.00 = 9.27 \times 10^{k} \times 10^{k} N (10^{k} \times (33.4 + 41.8))) = 1.472 kN$ SHEET 5 $M_{k2,10e} = \frac{2M_{k2,10e} + n\sum_{k=1}^{k}F_{km}}{2mn - e_{k}(m + n)} = ((8 \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times (2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8))) = 1.472 kN$ SHEET 5 $M_{k2,20e} = \frac{2M_{k2,10e} + n\sum_{k=1}^{k}F_{km}}{2mn - e_{k}(m + n)} = ((2 \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times 9.27 \times 10^{k})(10^{k} \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times 10^{k})(10^$	$\Sigma I_{eff,2} = \Sigma I_{eff,nc} = 333 \text{ mm}$				
$F_{1,86} = \frac{(8n - 2e_{1})M_{k2,104}}{2mn - e_{k}(m + n)}$ Table 6.2 where: m = 33.4 mm SHEET 4 $n = 41.8 mm$ SHEET 4 $e_{k} = 11.0 mm$ SHEET 5 $M_{k2,10e} = \frac{0.25\sum_{k=1}^{k}t_{k}^{k}f_{k}}{y_{k}} = (0.25 \times 333 \times 20.5^{p} \times 265)'1.00 = 9.27 \times 10^{k} \times 10^{k} N mm$ SHEET 5 $M_{k2,10e} = \frac{0.25\sum_{k=1}^{k}t_{k}^{k}f_{k}}{y_{k}} = (0.25 \times 333 \times 20.5^{p} \times 265)'1.00 = 9.27 \times 10^{k} \times 10^{k} N (10^{k} \times (33.4 + 41.8))) = 1.472 kN$ SHEET 5 $M_{k2,10e} = \frac{2M_{k2,10e} + n\sum_{k=1}^{k}F_{km}}{2mn - e_{k}(m + n)} = ((8 \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times (2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8))) = 1.472 kN$ SHEET 5 $M_{k2,20e} = \frac{2M_{k2,10e} + n\sum_{k=1}^{k}F_{km}}{2mn - e_{k}(m + n)} = ((2 \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times 9.27 \times 10^{k})(10^{k} \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times 9.27 \times 10^{k} \times 10^{k})(10^{k} \times 10^{k})(10^$					
where: SHEET 4 $n = 33.4 \text{ mm}$ SHEET 4 $n = 41.8 \text{ mm}$ SHEET 4 $e_{a} = 110 \text{ mm}$ SHEET 5 $M_{\mu,t,n_{0}} = \frac{0.25 \sum_{k=1}^{k} \frac{1}{k} \frac{1}{k} r_{k}}{r_{m}} = (0.25 \times 333 \times 20.5^{k} \times 265)^{k} 1.00 = 0.27 \times 10^{k} \times 10^{k} \text{ Nmm}}$ SHEET 5 $M_{\mu,t,n_{0}} = \frac{0.25 \sum_{k=1}^{k} \frac{1}{k} \frac{1}{k} r_{k}}{r_{mn} = (0.25 \times 333 \times 20.5^{k} \times 265)^{k} 1.00 + 0.27 \times 10^{k} \times 10^{k})^{k} (10^{k} \times [2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 \text{ kM}}$ SHEET 5 $Mode 2$ resistance (B \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^{k} \times 10^{k})^{k} (10^{k} \times [2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 \text{ kM}} SHEET 5 $F_{12,29} = \frac{2M_{4,25,24}}{m+1} - \frac{1}{m+1}$ (D \times 25 \times 333 \times 20.5^{k} \times 265)^{k} 1.00 = 0.27 \times 10^{k} \times 10^{k} \text{ Nmm}} SHEET 5 $F_{12,29} = \frac{2M_{4,25,24}}{T_{40}} + \frac{1}{m+1} + \frac{1}{m} = (2 \times 9.27 \times 10^{k} + 41.8 \times 813)^{k} (33.4 + 41.8) = 698 \text{ kM}}$ SHEET 5 $Mode 2$ resistance fool fullure) F_{12,30} = 5 F_{12,60} = (2 \times 9.27 \times 10^{k} + 41.8 \times 813)^{k} (33.4 + 41.8) = 698 \text{ kM} SHEET 6 $Mode 3$ resistance fool fullure) F_{12,30} = 5 F_{12,60} = min(1 + 72, 698, 813) = 698 \text{ kM} SHEET 6 $Mode 3$ resistance of outum finge in banding F_{12,60} = \frac{1}{m} \frac{1}{m} (1 + 72, 698, 813) = 698 \text{ kM} SHEET 6 $Mode 3$ resistance of outum finge in banding F					
where: SHEET 4 $n = 33.4 \text{ mm}$ SHEET 4 $n = 41.8 \text{ mm}$ SHEET 4 $e_{a} = 110 \text{ mm}$ SHEET 5 $M_{\mu,t,n_{0}} = \frac{0.25 \sum_{k=1}^{k} \frac{1}{k} \frac{1}{k} r_{k}}{r_{m}} = (0.25 \times 333 \times 20.5^{k} \times 265)^{k} 1.00 = 0.27 \times 10^{k} \times 10^{k} \text{ Nmm}}$ SHEET 5 $M_{\mu,t,n_{0}} = \frac{0.25 \sum_{k=1}^{k} \frac{1}{k} \frac{1}{k} r_{k}}{r_{mn} = (0.25 \times 333 \times 20.5^{k} \times 265)^{k} 1.00 + 0.27 \times 10^{k} \times 10^{k})^{k} (10^{k} \times [2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 \text{ kM}}$ SHEET 5 $Mode 2$ resistance (B \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^{k} \times 10^{k})^{k} (10^{k} \times [2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 \text{ kM}} SHEET 5 $F_{12,29} = \frac{2M_{4,25,24}}{m+1} - \frac{1}{m+1}$ (D \times 25 \times 333 \times 20.5^{k} \times 265)^{k} 1.00 = 0.27 \times 10^{k} \times 10^{k} \text{ Nmm}} SHEET 5 $F_{12,29} = \frac{2M_{4,25,24}}{T_{40}} + \frac{1}{m+1} + \frac{1}{m} = (2 \times 9.27 \times 10^{k} + 41.8 \times 813)^{k} (33.4 + 41.8) = 698 \text{ kM}}$ SHEET 5 $Mode 2$ resistance fool fullure) F_{12,30} = 5 F_{12,60} = (2 \times 9.27 \times 10^{k} + 41.8 \times 813)^{k} (33.4 + 41.8) = 698 \text{ kM} SHEET 6 $Mode 3$ resistance fool fullure) F_{12,30} = 5 F_{12,60} = min(1 + 72, 698, 813) = 698 \text{ kM} SHEET 6 $Mode 3$ resistance of outum finge in banding F_{12,60} = \frac{1}{m} \frac{1}{m} (1 + 72, 698, 813) = 698 \text{ kM} SHEET 6 $Mode 3$ resistance of outum finge in banding F	$F_{T,1,Rd} = \frac{(8n - 2e_w)M_{pl,1,Rd}}{2mn - e_w(m+n)}$				Table 6.2
m = 33,4 mm SHEET 4 n = 41,8 mm SHEET 4 e_e = 11,0 mm SHEET 5 $M_{x1,bel} = \frac{0.25 \sum_{k=1}^{l} \frac{t_k}{t_k} \frac{t_k}{t_k}}{Y_{x0}} = (0.25 \times 333 \times 20.5^2 \times 265)^{1}.00 = 9.27 \times 10^3 \times 10^3 Nmm$ SHEET 5 $M_{x1,bel} = \frac{0.25 \sum_{k=1}^{l} \frac{t_k}{t_k} \frac{t_k}{t_k}}{m + n} = (18 \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^3 \times 10^3)(10^3 \times (2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 kM EN 1993.1-8 Mode 2 resistance Frame = \frac{201 \times 120}{m + n} = (10 \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^3 \times 10^3)(10^3 \times (2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 kM EN 1993.1-8 Mode 2 resistance Frame = 203 kM SHEET 5 Frame = 203 kN SHEET 5 SHEET 5 \Sigma^{1} time = 4 x 203 = 813 kN SHEET 5 SHEET 5 M_{x22,he} = \frac{0.25 \sum_{k=1}^{l} \frac{t_k}{t_k} t_x}{m + 1} = (2 \times 9.27 \times 10^4 + 41.8 \times 813)(33.4 + 41.8) = 698 kN SHEET 5 M_{x22,he} = \frac{0.25 \sum_{k=1}^{l} \frac{t_k}{t_k} t_x}{m + 1} = \frac{t_k}{t_{x2,hel}} = min[1.472; 698; 813] = 698 kN EN 1993.1-8 Section co foolumi finance in bendins Fundes in min[1.472; 698; 813] = 698 kN EN 1993.1-8 Column web in transverse tension T Fundes in transverse tension T STEP 18 $					
n = 41,8 mm SHEET 4 $e_w = 11,0 \text{ mm}$ SHEET 5 $M_{\mu_1,\mu_2} = \frac{0.25 \sum_{k=1}^{L} \frac{L_k^2}{Y_k} f_{k=1}}{Y_{k0}} = (0.25 \times 333 \times 20.5^k \times 265)'1.00 = 9.27 \times 10^k \times 10^k \text{ Nmm}$ From the second					SHEET 4
$e_{w} =$ 11.0 m SHEET 5 $M_{w1,m_{el}} = \frac{0.25 \sum_{k=1}^{l} t_{w}^{-1} t_{w}^{-1} t_{w}^{-1}}{Y_{uo}} =$ $(0.25 \times 333 \times 20.5^{2} \times 265)' 1.00 = 9.27 \times 10^{3} \times 10^{3} Nmm$ F $F_{1,1,90} = \frac{(B_{10} - 2e_{w})M_{w1,00}}{2mn - e_{w}(m+n)} =$ $((B \times 41, 8 - 2 \times 11.0) \times 9.27 \times 10^{3} \times 10^{3})' (10^{2} \times [2 \times 33, 4 \times 41, 8 - 11.0 \times (33, 4 + 41.8)]) = 1.472 \text{ KM}$ En 1993-1.43 Mode 2 resistance F F F F F P<					
$F_{T,Bei} = \frac{(8n - 2e_{w})M_{w1Mit}}{2mn - e_{w}(m + n)} = [(8 \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^{9} \times 10^{9})(10^{9} \times [2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 \text{ kN}$ $\frac{Mode 2 resistance}{m + n} \sum_{F_{12,2Re}} = \frac{2M_{9/2,Re} + n\sum_{F_{12,Re}}}{m + n}$ $F_{T,2Re} = \frac{2M_{9/2,Re} + n\sum_{F_{12,Re}}}{m + n} = (2 \times 9.27 \times 10^{9} \times 10^{9} \times 10^{9} \times 10^{9} \text{ Nmm}}$ $F_{T,2Re} = \frac{2M_{9/2,Re} + n\sum_{F_{12,Re}}}{m + n} = (2 \times 9.27 \times 10^{9} + 41.8 \times 813)/(33.4 + 41.8) = 698 \text{ kN}}$ $\frac{Mode 3 resistance (bolt failure)}{m + n}$ $F_{T,3Re} = \sum_{F_{12,Re}} F_{T,2Re} = 4 \times 203 = 813 \text{ kN}}$ $\frac{Resistance of column flange in bending}{F_{UE,Re}} = \min[T_{T,1,Re}] F_{T,2Re} = \min[T_{T,1,Re}] F_{T,2Re} = \min[T_{T,1,Re}] F_{T,2Re} = \min[T_{T,1,Re}] F_{T,2Re} = \min[1.472; 698; 813] = 698 \text{ kN}}$ $\frac{En 1993-1.8}{E2.4.1(6)}$ $\frac{STEP 18}{m}$ The design resistance of an unstiffed column we in transverse tension is: F_{UE,RR} = \frac{\omega b_{eff,1,w} f_{y,z}}{m}}					
$F_{T,Bei} = \frac{(8n - 2e_{w})M_{w1Mit}}{2mn - e_{w}(m + n)} = [(8 \times 41.8 - 2 \times 11.0) \times 9.27 \times 10^{9} \times 10^{9})(10^{9} \times [2 \times 33.4 \times 41.8 - 11.0 \times (33.4 + 41.8)]) = 1.472 \text{ kN}$ $\frac{Mode 2 resistance}{m + n} \sum_{F_{12,2Re}} = \frac{2M_{9/2,Re} + n\sum_{F_{12,Re}}}{m + n}$ $F_{T,2Re} = \frac{2M_{9/2,Re} + n\sum_{F_{12,Re}}}{m + n} = (2 \times 9.27 \times 10^{9} \times 10^{9} \times 10^{9} \times 10^{9} \text{ Nmm}}$ $F_{T,2Re} = \frac{2M_{9/2,Re} + n\sum_{F_{12,Re}}}{m + n} = (2 \times 9.27 \times 10^{9} + 41.8 \times 813)/(33.4 + 41.8) = 698 \text{ kN}}$ $\frac{Mode 3 resistance (bolt failure)}{m + n}$ $F_{T,3Re} = \sum_{F_{12,Re}} F_{T,2Re} = 4 \times 203 = 813 \text{ kN}}$ $\frac{Resistance of column flange in bending}{F_{UE,Re}} = \min[T_{T,1,Re}] F_{T,2Re} = \min[T_{T,1,Re}] F_{T,2Re} = \min[T_{T,1,Re}] F_{T,2Re} = \min[T_{T,1,Re}] F_{T,2Re} = \min[1.472; 698; 813] = 698 \text{ kN}}$ $\frac{En 1993-1.8}{E2.4.1(6)}$ $\frac{STEP 18}{m}$ The design resistance of an unstiffed column we in transverse tension is: F_{UE,RR} = \frac{\omega b_{eff,1,w} f_{y,z}}{m}}	$0.25\Sigma I t^2 f$				
Mode 2 resistanceEN 1993-1-8 Table 6.2 $F_{r,2,R_0} = \frac{2M_{\mu_1,2,R_0} + n\sum_{n+1} F_{r,n_0}}{m+n}$ SHEET 5where: $F_{L,R_0} = 203 \text{ kN}$ SHEET 5 $F_{L,R_0} = 4 \times 203 = 813 \text{ kN}$ SHEET 5 $M_{\mu_1,2,R_0} = \frac{0.25 \sum_{i=n} I_{n+1}^{i} \xi_{T,n}}{\gamma_{k0}} = (0.25 \times 333 \times 20.5^{5} \times 265)' 1.00 = 9.27 \times 10^{3} \times 10^{3} \text{ Nmm}$ SHEET 5 $F_{1,2,R_0} = \frac{2M_{\mu_1,2,R_0} + n\sum_{T,m} F_{L,m}}{m+n} = (2 \times 9.27 \times 10^{3} + 41.8 \times 813)' (33.4 + 41.8) = 698 \text{ kN}$ SHEET 5Mode 3 resistance (bolt failure)F_{1,3,R_0} = \Sigma_{L,R_0} = 4 \times 203 = 813 \text{ kN}SHEET 5Sesistance of column flange in bendinaF_{1,3,R_0} = \Sigma_{L,R_0} = min[1.472; 698; 813] = 698 \text{ kN}SHEET 5Column web in transverse tensionSTEP 18STEP 18					
$F_{T,2Re} = \frac{2M_{\mu 2,2Re} + n\sum_{m+n} F_{T,2R}}{m+n}$ $F_{T,2Re} = \frac{2M_{\mu 2,2Re} + n\sum_{m+n} F_{T,2R}}{m+n}$ $F_{T,Re} = 203 \text{ kN}$ $SHEET 5$ $F_{T,Re} = 4 \times 203 = 813 \text{ kN}$ $M_{\mu 1,2Re} = \frac{0.25\sum_{m+n} L_{e}^{2}L_{e}^{2}L_{e}^{2}}{\gamma_{MO}} = (0.25 \times 333 \times 20.5^{2} \times 265)/1,00 = 9,27 \times 10^{3} \times 10^{3} \text{ Nmm}}$ $F_{T,2,Re} = \frac{2M_{\mu 2,2Re} + n\sum_{m+n} F_{T,RR}}{m+n} = (2 \times 9,27 \times 10^{3} + 41,8 \times 813)/(33,4 + 41,8) = 698 \text{ kN}}$ $\frac{Mode 3 resistance (bolt failure)}{r_{T,3,Re}} = 4 \times 203 = 813 \text{ kN}$ $\frac{Resistance of column flange in bending}{r_{T,1,Re}; F_{T,2,Re}; F_{T,3,Re}]} = \min[1.472; 698; 813] = 698 \text{ kN}}$ $F_{Luc,Re} = \frac{ob_{m1,me} L_{me} L$	$F_{_{T,1,Rd}} = \frac{\left(8n - 2e_{_{W}}\right)M_{_{pl,1,Rd}}}{2mn - e_{_{W}}\left(m + n\right)} =$	[(8 x 41,8 - 2 x 11,0) x 9,27 x 10 ³ x 1	0³)/{10³ x [2 x 33,4 x 41,8 -	11,0 x (33,4 + 41,8)]} = 1.472 kN	
where:SHEET 5 $F_{t,Rd} = 203 \text{ kN}$ SHEET 5 $\Sigma F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$ $M_{pl_{2Rd}} = \frac{0.25 \sum_{k=2} t_{ck}^2 f_{y,c}}{\gamma_{M0}} = (0.25 \times 333 \times 20.5^2 \times 265)'1.00 = 9.27 \times 10^3 \times 10^3 \text{ Nmm}$ $F_{T,2Rd} = \frac{2M_{pl_{2Rd}} + n \sum_{k=1}^{k} F_{r,k}}{m+n} = (2 \times 9.27 \times 10^3 + 41.8 \times 813)'(33.4 + 41.8) = 698 \text{ kN}$ Final State S	Mode 2 resistance				
where:SHEET 5 $F_{t,Rd} = 203 \text{ kN}$ SHEET 5 $\Sigma F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$ $M_{pl_{2Rd}} = \frac{0.25 \sum_{k=2} t_{ck}^2 f_{y,c}}{\gamma_{M0}} = (0.25 \times 333 \times 20.5^2 \times 265)'1.00 = 9.27 \times 10^3 \times 10^3 \text{ Nmm}$ $F_{T,2Rd} = \frac{2M_{pl_{2Rd}} + n \sum_{k=1}^{k} F_{r,k}}{m+n} = (2 \times 9.27 \times 10^3 + 41.8 \times 813)'(33.4 + 41.8) = 698 \text{ kN}$ Final State S	$F_{\mathrm{T,2,Rd}} = \frac{2M_{\mathrm{pl,2,Rd}} + n\sumF_{\mathrm{t,Rd}}}{m+n}$				
$\sum F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$ $M_{p_{1,2Rd}} = \frac{0.25 \sum_{l \neq t, 2} t_{lc}^2 f_{y,c}}{\gamma_{M0}} = (0.25 \times 333 \times 20, 5^2 \times 265)/1, 00 = 9,27 \times 10^3 \times 10^3 \text{ Nmm}}$ $F_{T,2Rd} = \frac{2M_{p_{1,2Rd}} + n\sum_{r} F_{t,Rd}}{m+n} = (2 \times 9, 27 \times 10^3 + 41, 8 \times 813)/(33, 4 + 41, 8) = 698 \text{ kN}}$ $\frac{Mode 3 \text{ resistance (bolt failure)}}{F_{T,3,Rd}} = \sum F_{t,Rd} = 4 \times 203 = 813 \text{ kN}}$ $\frac{F_{t,10,Rd}}{F_{t,10,Rd}} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}}$ $\frac{F_{t,10,Rd}}{F_{t,10,Rd}} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}}$ $\frac{F_{t,10,Rd}}{F_{t,10,Rd}} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}}$					
$\begin{split} M_{p_{12,Rd}} &= \frac{0.25 \sum_{i \in H_2} t_i^2 t_i^2 t_{y,c}}{\gamma_{M0}} = (0.25 \times 333 \times 20, 5^2 \times 265)' 1, 00 = 9, 27 \times 10^3 \times 10^3 Nmm \\ F_{T_{2,Rd}} &= \frac{2M_{p_{12,Rd}} + n \sum_{T_{Nd}} F_{L,\mathsf{Rd}}}{m + n} = (2 \times 9, 27 \times 10^3 + 41, 8 \times 813)' (33, 4 + 41, 8) = 698 kN \\ \\ \frac{Mode 3 resistance (bolt failure)}{F_{T_{3,Rd}}} &= \sum_{L_{Rd}} F_{L_{Rd}} = 4 \times 203 = 813 kN \\ \\ \frac{Resistance of column flange in bending}{F_{L_{L,Rd}}} = \min[F_{T_{-3,Rd}}; F_{T_{-3,Rd}}] = \min[1.472; 698; 813] = 698 kN \\ \\ \\ \frac{Column web in transverse tension}{The design resistance of an unstiffed column web in transverse tension is: F_{Lw,Rd}} = \frac{ob_{eff,Lw}t_{wc}f_{yc}}{t_{Md}} \\ \\ \\ \end{array}$	F _{t,Rd} = 203 kN				SHEET 5
$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum_{k=0}^{\infty} F_{kRd}}{m+n} = (2 \times 9,27 \times 10^3 + 41,8 \times 813)/(33,4 + 41,8) = 698 \text{ kN}$ $\frac{Mode 3 \text{ resistance (bolt failure)}}{F_{T,3,Rd} = \sum_{k=0}^{\infty} F_{k,Rd}} = 4 \times 203 = 813 \text{ kN}$ $\frac{Resistance \text{ of column flange in bending}}{F_{t,t0,Rd} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}}$ $\frac{EN 1993-1-8}{6.2.4.1(6)}$ $\frac{EN 1993-1-8}{6.2.4.1(6)}$ $\frac{EN 1993-1-8}{6.2.4.1(6)}$ $\frac{EN 1993-1-8}{6.2.4.1(6)}$	$\Sigma F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$				
Mode 3 resistance (bolt failure) EN 1993-1-8 $F_{T,3,Rd} = \Sigma F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$ Table 6.2 Resistance of column flange in bending EN 1993-1-8 $F_{t,tc,Rd} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}$ EN 1993-1-8 Column web in transverse tension STEP 1B The design resistance of an unstiffed column web in transverse tension is: $F_{t,w,Rd} = \frac{\omega b_{eff,t,w} t_{w,c} f_{y,c}}{\omega t_{w,c} t_{w,c} t_{w,c}}$	$M_{pl,2,Rd} = \frac{0.25 \sum l_{eff,2} t_{fc}^2 f_{y,c}}{\gamma_{M0}} =$	(0.25 x 333 x 20,5 ² x 265)/1,00 = 9,2	7 x 10³ x 10³ Nmm		
$F_{T,3,Rd} = \Sigma F_{t,Rd} =$ $4 \times 203 = 813 \text{ kN}$ EN 1993-1-8 Table 6.2 Resistance of column flange in bending EN 1993-1-8 6.2 EN 1993-1-8 6.2 $F_{t,tc,Rd} = min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] =$ min[1.472; 698; 813] = 698 kN EN 1993-1-8 6.2.4.1(6) Column web in transverse tension STEP 1B STEP 1B The design resistance of an unstiffed column web in transverse tension is: $F_{t,w,Rd} = \frac{\omega b_{eff,t,w} t_{w,c} f_{y,c}}{\omega t_{w,c} t_{$	$F_{_{T,2,Rd}} = \frac{2M_{_{pl,2,Rd}} + n \sum F_{_{t,Rd}}}{m+n} =$	(2 x 9,27 x 10 ³ + 41,8 x 813)/(33,4 + 4	41,8) = 698 kN		
$F_{T,3,Rd} = \sum F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$ Table 6.2 Resistance of column flange in bending F $F_{t,tc,Rd} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}$ EN 1993-1-8 Column web in transverse tension 57EP 1B The design resistance of an unstiffed column web in transverse tension is: $F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,c}}{2}$	Mode 3 resistance (bolt failure)				
$F_{t,tc,Rd} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}$ $EN 1993-1-8 \\ 6.2.4.1(6)$ $EN 1993-1-8 \\ 6.2.4.1(6)$ $The design resistance of an unstiffed column web in transverse tension is: F_{t,w,Rd} = \frac{\omega b_{eff,twc} t_{wc} f_{y,c}}{\omega t_{wc} t_{wc} f_{y,c}}$	$F_{T,3,Rd} = \sum F_{t,Rd} = 4 \times 203$	= 813 kN			
$F_{t,fc,Rd} = \min[F_{T,1,Rd}, F_{T,2,Rd}, F_{T,3,Rd}] = \min[1.472; 698; 813] = 698 \text{ kN}$ Column web in transverse tension The design resistance of an unstiffed column web in transverse tension is: $F_{t,wc,Rd} = \frac{\omega b_{eff,twc} t_{wc} f_{y,c}}{\omega t_{wc}}$	Resistance of column flange in	bending			EN 1993-1-8
The design resistance of an unstiffed column web in transverse tension is: $F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,c}}{\omega t_{wc} t_$	$F_{t,tc,Rd} = min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3}]$	_{Rd}] = min[1.472; 698; 813] = 698 kN			
The design resistance of an unstiffed column web in transverse tension is: $F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,c}}{\gamma_{wc}}$	Column web in transverse te	nsion			STEP 1B
Y	The design resistance of an un	stiffed column web in transverse tension	is: $F_{t.wc.Rd} = \frac{\omega b_{eff,t.wc} t}{\omega t}$	wc f _{y.c}	
where b _{eff,twc} is the equivalente T-stub representing the column flange from Sec. 6.2.6.4 (EN 1993-1-8). Conservatively use the 6.2.6.3(3) Iesser of the values of effective lengths for Mode 1 and Mode 2: SHEET 10					
(cont'd)	(cont'd)				

Your Logo SPREADSHEETS Structural Design Carlo Sigmund	Project: Project No 1 Client: Client No 1 Location: Location No 1	Sheet: 12 of 23
Your Company Name here	Made by: <u>CS</u> Date: <u>25/</u>	/05/2019 Job No: <u>1</u>
Company address mail@domain.com	Checked: <u>CS</u> Revision: <u>CS</u>	·
$b_{eff,t,wc} = \sum l_{eff,2} = 333 \text{ mm}$		
with $t_{wc} = 12.8 \text{ mm}$; $f_{y,c} = 265 \text{ N/mm}^2$		
The equation to use to calculate ω depends on β . As before, β	= 0,0 and therefore ω = 1,00:	SHEET 6
$F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,c}}{\gamma_{M0}} = (1,00 \times 333 \times 12.8 \times 265/1,00)/10$	^a = 1.130 kN	
End plate in bending		
There is no group mode for the end plate.		
SUMMARY: RESISTANCE OF BOLT ROWS 1 AND 2 COM	INED	
Resistance of bolt row 1 and 2 combined, on the column side,		
Column flange in bending:	$F_{t,fc,Rd} = 698 \text{ kN}$	
Column web in tension:	$F_{t,wc,Rd} = 1.130 \text{ kN}$	
Therefore, the resistance of bolts 1 and 2 combined is:	$F_{t,1-2,Rd} = 698 \text{ kN}$	
The resistance of bolt row 2 on the column side is therefore line $F_{12,c,Rd} = F_{t,1-2,Rd} - F_{t1,Rd} = (698 - 377) = 321 \text{ kN}$ SUMMARY: RESISTANCE OF BOLT ROW 2 Resistance of bolt row 2 is the smallest value of:	ited to:	SHEET 8
Column flange in bending:	F _{t.fc,Rd} = 398 kN	SHEET 8
Column web in tension:	F _{t,wc,Rd} = 790 kN	SHEETS 6/8
Beam web in tesnion:	F _{t.wb,Rd} = 673 kN	SHEET 10
End plate in bending:	$F_{t,ep,Rd} = 407 \text{ kN}$	SHEET 10
Column side, as part of a group (see above):	$F_{t2,c,Rd} = 321 \text{ kN}$	
Therefore, the resistance of bolt row 2 is: BOLT ROW 3 First, consider row 3 alone.	F _{t,2,Rd} = 321 kN	
Column flange in bending		STEP 1
The column flange in bending resistance is the same as bolt re	ws 1 and 2 therefore: $F_{t,fc,Rd} = 398 \text{ kN}$	
Column web in transverse tension		STEP 1B
The column web resistance to transverse tension is as calcula	ed for bolt rows 1 and 2.	
Therefore:	$F_{t,wc,Rd} = 790 \text{ kN}$	SHEET 6
End plate in bending		STEP 1
Bolt row 3 is the second bolt row below the beam's tension flat dimensions are as noted above for bolt row 2. Determine m, e	ge, considered as an "other end bolt-row" in Table 6.6. The and I_{eff} :	key
$e = e_p = 75 \text{ mm}$ $m = 38,6 \text{ mm}$ $l_{eff,cp} = 2\pi m = 2 \times \pi \times 38,6 = 242 \text{ mm}$		SHEETS 2/8

Your Logo EUROCODES SPREADSHEETS Structural Design	Project: Project No 1		
	Client: Client No 1		
Carlo Sigmund	Location: Location No 1		
Your Company Name here	Made by: <u>CS</u>	Date: 25/05/2019	Job No: <u>1</u>
Company address mail@domain.com	Checked: <u>CS</u>	Revision: <u>CS</u>	
I _{eff,nc} = 4m + 1.25e = 4 x 38,6 + 1.25 x 75 = 248 mm			
l _{eff,1} = min[l _{eff,cp} ; l _{eff,nc}] = min[242; 248] = 242 mm			
I _{eff,2} = I _{eff,nc} = 248 mm			
Mode 1 resistance			
For Mode 1, using Method 2:			
$F_{T,1,Rd} = \frac{(8n - 2e_w)M_{pl,1,Rd}}{2mn - e_w(m+n)}$			EN 1993-1-8
$\frac{1}{2}$ $\frac{1}$			Table 6.2
where:			
n = 48,2 mm and m = 38,6 (as for row 2)			SHEETS 8/9
n _w = 11,0 mm			SHEET 5
$M_{p ,1Rd} = \frac{0.25 \sum I_{eff,1} t_p^2 f_{y,p}}{\gamma_{M0}} = $ (0.25 x 242 x 25 ² x 265)/	1,00 = 10,0 x 10 ³ x 10 ³ Nmm = 10,0 k	Nm	
$F_{T,1,Rd} = \frac{(8n - 2e_w)M_{pl,1,Rd}}{2mn - e_w(m+n)} = [(8 \times 48, 2 - 2 \times 11, 0) \times 1]$	0,0 x 10ª]/{[2 x 38,6 x 48,2 - 11,0 x (3	88,6 + 48,2)]} = 1.320 kN	
Mode 2 resistance			
$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$			
$M_{pl,2,Rd} = \frac{0.25 \sum l_{eff,2} t_p^2 f_{y,p}}{\gamma_{M0}}$			
$t_p = 25 \text{ mm}$ $F_{t,Rd} = 203 \text{ kN}$ $\Sigma F_{t,Rd} = 2.5 \text{ mm}$	k 203 = 407 kN		
$M_{pl2Rd} = \frac{0.25 \sum I_{eff_2} l_p^2 f_{y,p}}{\gamma_{M0}} = $ (0.25 x 248 x 25 ² x 265)/	'1,00 = 10,3 x 10³ x 10³ Nmm = 10,3 k	Nm	
$F_{T,2,Rd} = \frac{2M_{pL2,Rd} + n\sum F_{t,Rd}}{m+n} = $ (2 x 10,3 x 10 ³ + 48,2 x 4)			
Mode 3 resistance (bolt failure)			
$F_{t,3,Rd} = \Sigma F_{t,Rd} = 407 \text{ kN}$			
Resistance of end plate in bending			EN 1993-1-8 6.2.4.1(6)
$F_{t,ep,Rd} = min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = min[1.320; 463;$	407] = 407 kN		
Room woh in tonsion			STED 4B
Beam web in tension =b _{eff.t.wb} t _{wb} f _{y.b}			STEP 1B EN 1993-1-8
$= \frac{\mathbf{b}_{\text{eff},t,wb} f_{wb} f_{y,b}}{\gamma_{M0}}$			6.2.6.8(1) Eq. (6.22)
where:			
$b_{eff,t,wb} = I_{eff}$			

Your Logo SPREADSHEETS Structural Design Carlo Sigmund	Project: <u>Project No</u> Client: <u>Client No</u> Location: <u>Location N</u>	1	Shee
Your Company Name here Company address	Made by: <u>CS</u>	Date: 25/05/2019	Job No: <u>1</u>
mail@domain.com	Checked: <u>CS</u>	Revision: <u>CS</u>	
Conservatively, consider minimum I _{eff} . Therefore:			
$p_{eff,t,wb} = l_{eff} = min[l_{eff,1}; l_{eff,2}] = min[242; 248] = 242 mm.$			SHEET 13
t _{wb} = 10,1 mm.			
Therefore, $F_{T,wb,Rd} = \frac{b_{eff,1,wb} t_{wb} f_{y,b}}{\gamma_{M0}} = $ [(242 x 10,1 x 2)	275)/10³]/1,0 = 673 kN		
The above resistances for row 3 all consider the resistance may be limited by the resistance of the group of rows 1, 2, a resistance may be limited by groups of rows 2 and 3. Those	nd 3 or by the group of rows	s 2 and 3. On the beam side, the	
ROWS 1, 2 AND 3 COMBINED			
Column flange in bending			STEP 1
Circular and non-circular yield line patterns are:		4	
ROW 1 ROW 2 ROW 3			
The effective length for bolt row 1, as part of a group, is the	same as that determined as	s part of the group of rows 1 an 2. Thus:	
Row 1: l _{eff,nc} = 167 mm			SHEET 10
$I_{eff,cp} = 205 \text{ mm}$			
Row 3 is also an "end bolt row", similar to row 1, but the val	ue of bolt spacing p is differe	ent.	
p = p ₂₋₃ = 90 mm			
Thus: $1 = 2m + 0.625e + 0.5n = (2 - 26.4) + (2 - 26.7)$			
$I_{eff,cp} = 2m + 0.625e + 0.5p = (2 \times 33,4) + (0.625 \times 79,4)$ $I_{eff,cp} = \pi m + p = (\pi \times 33,4) + 90 = 195 \text{ mm}$	+) + (0.5 x 90) = 162 mm		
ייייי די (וו ג גס,4) ד ש פוש ווווו			
For this group, bolt row 2 is an "other inner bolt row". Theref	ore:		
$l_{eff,cp} = 2p$ $l_{eff,nc} = p$			
Here, the vertical spacing between bolts above and below re	ow 2 is different, therefore u	se:	
$p = \frac{p_{1-2}}{2} + \frac{p_{2-3}}{2} = (100/2) + (90/2) = 95 \text{ mm}$	$I_{eff,cp} = 2p = 2 \times 95$	= 190 mm	
Therefore, the total effective lengths for this group of rows a	re:		
_ v ,			

Your Logo EUROCODES Proje	No 1	Sheet:
Structural Design	No 1	15 of 23
Carlo Sigmund Locati	n No 1	
Your Company Name here Made	Date: 25/05/2019 Job No: 1	
Company address mail@domain.com Check	Revision: CS	
Σl _{eff.cp} = 205 + 190 + 195 = 590 mm		
Therefore, assume: $\sum_{l_{eff,2}} = \sum_{l_{eff,1}} = 423 \text{ mm} \qquad (\sum_{l_{eff,2}} = \sum_{l_{eff,nc}} = \sum_{l_{eff,nc}} \sum_{l_{eff,$	EN 1993-1-8	
	Table 6.4	
Mode 1 resistance		
For Mode 1, using Method 2:		
$F_{T,1Rd} = \frac{(8n - 2e_w)M_{pl,1Rd}}{2mn + e_w(m+n)}$		
where:		
m = 33,4 mm n = 41,8 mm	SHEET 4 SHEET 4	
e _w = 11.0 mm	SHEET 5	
$M_{pl,1Rd} = \frac{0.25 \sum l_{eff,1} t_r^2 f_{y,c}}{\gamma_{M0}} = (0.25 \times 423 \times 20.5^2 \times 265)/1.0 = 11.8 \times 10^{-10}$	า = 11,8 kNm	
$F_{T,1Rd} = \frac{(8n - 2e_w)M_{pl,1Rd}}{2mn + e_w(m+n)} = - [(8 \times 41, 8 - 2 \times 11, 0) \times 11, 8 \times 10^3]/[(2 \times 3 \times 10^3)/((2 \times 3 \times 10^3))] = - (18 \times 41, 8 - 2 \times 11, 0) \times 11, 8 \times 10^3]/[(2 \times 3 \times 10^3)/((2 \times 3 \times 10^3))]$	- 11,0 x (33,4 + 41,8)] = 1.870 kN	
Mode 2 resistance		
$F_{T,2,Rd} = \frac{2M_{pl2,Rd} + n\sum F_{t,Rd}}{m+n}$		
where:		
$F_{t,Rd} = 203 \text{ kN}$	SHEET 5	
$\Sigma F_{t,Rd} = 6 \times 203 = 1.220 \text{ kN}$		
$M_{pl,2,Rd} = \frac{0,25 \sum l_{eff,2,Rd} t_{f}^{2} f_{y,c}}{\gamma_{M0}}$		
Here, as $I_{eff,2} = I_{eff,1}$, $M_{pl,2,Rd} = M_{pl,1,Rd}$.		
$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = (2 \times 11,8 \times 10^3 + 41,8 \times 1.220)/(33,4 + 1.220)$	l kN	
Mode 3 resistance (bolt failure)		
$F_{T,3,Rd} = \sum F_{t,Rd} = 6 \times 203 = 1.220 \text{ kN}$	EN 1993-1-8	
Resistance of column flange in bending	Table 6.2	
$F_{t,fc,Rd} = \min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = \min[1.870; 991; 1.220] = 991 \text{ kN}$	EN 1993-1-8	
	6.2.4.1(6)	
Column web in transverse tension	STEP 1B	
The design resistance of an unstiffened column web in tranverse tension $r = \omega b_{eff,twe} t_{we} f_{ve}$	EN 1993-1-8 6.2.6.3(1)	
$F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,c}}{\gamma_{M0}}$	Eq. (6.15)	
where: beff,t,wc is the effective length of the equivalent T-stub representing the (see sheet 15) take:	ge from 6.2.6.4. As the failure is Mode 2 EN 1993-1-8 6.2.6.3(3)	
b _{eff,t,wc} = $\Sigma I_{eff,2} = 423 \text{ mm}$	SHEET 15	

Your Logo SPREADSHEETS Structural Design	Project:	Project No 1	Sheet
	Client:	Client No 1	
Carlo Sigmund	Location:	Location No 1	
Your Company Name here	Made by:	CS Date: 25/05/2019	Job No: 1
Company address mail@domain.com	Checked:		
The equation to use to calculate ω depends on $\beta.\;$ As before,	with β =	0,00 [-] therefore: ω = 1,00 [-]	SHEET 6
$F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,c}}{\gamma_{M0}} = [(1,0 \times 423 \times 12,8 \times 265)/10^{s}]/1,$	0 = 1.435 kN		
Summary: resistance of bolts rows 1, 2 and 3 combined			
Resistance of bolt rows 1, 2 and 3 combined, on the column	side, is the sma	aller value of:	
column flange in bending:	$F_{t,fc,Rd} =$	991 kN	
column web in tension:	F _{t,wc,Rd} =	1.435 kN	
Therefore, the resistance of bolt row 1, 2 and 3 combined is:	F _{t,1-3,Rd} =	991 kN	
The resistance of bolt row 3 on the column side is therefore li	mited to:		
$F_{t_{3,c,Rd}} = (F_{t,1-3,Rd} - F_{t,1-2,Rd}) = (991 - 698) = 293 \text{ kN}$			
ROWS 2 AND 3 COMBINED			
Column side-flange in bending			
Following the same process as for row 1, 2 and 3 combined,			
$\sum I_{\text{eff,cp}} = 2\pi m + 2p = 2 \times \pi \times 33,4 + 2 \times 90 = 390 \text{ mm}$			
$\sum I_{eff,nc} = 4m + 1.25e + p = 4 \times 33,4 + 1,25 \times 79,4 + 90 = 32$	23 mm		
Therefore,			
$\sum_{\text{leff,2}} = \sum_{\text{leff,1}} = 323 \text{ mm}$			
Mode 1 resistance			
			EN 1993-1-8
$M_{pl,1Rd} = \frac{0.25 \sum_{leff,1} t_{f}^{2} f_{y,c}}{\gamma_{M0}} = (0.25 \times 323 \times 20.5^{2} \times 265)/1,0$	= 9,0 x 10 ³ x 1	0° Nmm = 9,0 kNm	Table 6.2
$F_{T,1,Rd} = \frac{(8n - 2e_w)M_{pl,1,Rd}}{2mn + e_w(m+n)} = [(8 \times 41, 8 - 2 \times 11, 0) \times 9, 0 \times 1]$	0³]/[(2 x 33,4 >	: 41,8) – 11,0 x (33,4 + 41,8)] = 1.428 kN	
Mode 2 resistance			
Here, as $I_{eff,2} = I_{eff,1}$, $M_{pl,2,Rd} = M_{pl,1,Rd}$:			
$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = (2 \times 9,0 \times 10^{3} + 41,8 \times 4 \times 2)$	203)/(33,4 + 41	,8) = 691 kN	EN 1993-1-8 Table 6.2
Mode 3 resistance (bolt failure)			EN 1993-1-8
$F_{T,3,Rd} = \Sigma F_{t,Rd} = (6 \times 203) = 1.220 \text{ kN}$			EN 1993-1-8 Table 6.2
Column web in transverse tension			EN 1993-1-8 6.2.6.3(1)
b _{eff,twc} = 323 mm			Eq. (6.15)
The equation to use to calculate ω depends on $\beta.$ As before,	with β =	0,00 [-] therefore: ω = 1,00 [-]	SHEET 6
$F_{t,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,c}}{\gamma_{M0}} = [(1,0 \times 323 \times 12,8 \times 265)/10^3]/1,$	0 = 1.096 kN		

Your Logo EUROCODES	Project: Project No 1		Sheet
Structural Design	Client: Client No 1		17 of 2
Carlo Sigmund	Location: Location No 1		
Your Company Name here	Made by: <u>CS</u>	Date: 25/05/2019	Job No: <u>1</u>
Company address nail@domain.com	Checked: <u>CS</u>	Revision: CS	
Poom side and plate in banding			
Beam side-end plate in bending On the beam side, row 1 is not part of a group but the resisi	tance of row 2 may be limited by th	a registerion of rows 2 and 3 as a	
proup. Determine the effective lengths for rows 2 and 3 con Row 2 is a "first bolt-row below tension flange of beam" in T	nbined:		
$_{\text{eff,cp}} = \pi m + p$			
Here: p = p ₂₋₃ = 90 mm n = 48,2 m =	= 38,6 (as for row 2 alone)		
$_{\text{eff,cp}} = \pi m + p = (\pi \times 38.6) + 90 = 211 \text{ mm}$			STEP 1 A
Dbtain a from Figure 6.11 - EN 1993-1-8 (or Annex G) usir	ng (see sheet 9): λ	$\lambda_1 = 0,3395$ $\lambda_2 = 0,30647$	
From Figure 6.11 α = 7,3 [-]			
$_{\text{eff,nc}} = 0.5\text{p} + \alpha \text{m} - (2\text{m} + 0.625\text{e}) = 0,5 \times 90 + 7,3 \times 38,6$	6 - [2 x 38,6 + (0.625 x 75)] = 204 r	nm	
Row 3 is an "other end bolt-row" in Table 6.6			
$_{\text{eff,cp}} = \pi m + p = (\pi \times 38,6) + 90 = 211 \text{ mm}$			STEP 1 A
$_{\text{eff,nc}} = 2\text{m} + 0.625\text{e} + 0.5\text{p} = (2 \times 38,6) + (0.625 \times 75)$	+ (0.5 x 90) = 169 mm		
herefore, the total effective lengths for this group of rows a			
∑l _{eff,nc} = 204 + 169 = 373 mm			
Σ ^l eff.cp ⁼ 211 + 211 = 422 mm			
tence,			
$\sum_{l = 0}^{l} I_{eff,2} = \sum_{l = 0}^{l} I_{eff,1} = 373 \text{ mm}$			
lada 1 rapiatanaa (rawa 2 + 2)			
<i>Mode 1 resistance (rows 2 + 3)</i> For Mode 1 failure, using Method 2:			EN 1993-1-8
-			Table 6.2
$\overline{F}_{\text{T,IRd}} = \frac{\left(8n - 2e_{w}\right)M_{\text{pl,IRd}}}{2mn + e_{w}\left(m + n\right)}$			
vhere:			
n = 48,2 mm			SHEET 9
e _w = 11,0 mm			SHEET 5
$I_{\text{pl,I,Rd}} = \frac{0.25 \sum I_{\text{eff,1}} t_p^2 f_{\text{y,p.}}}{\gamma_{\text{M0}}} = 0.25 \text{ x } 373 \text{ x } 25^2 \text{ x } 265/1,0 \text{ = }$	15,4 x 10 ³ x 10 ³ Nmm = 15,4 kNm		
n = 38,6 mm			SHEET 8
$\overline{E}_{T,1,R,d} = \frac{(8n - 2e_w)M_{p,1,R,d}}{2mn + e_w(m+n)} = [(8 \times 48, 2 - 2 \times 11, 0) \times 15, 4]$	4 x 10³]/[2 x 38,6 x 48,2 − 11,0 x (38	8,6 + 48,2)] = 2.034 kN	

Your Logo EUROCODES	S Project: Project No 1		Shee
Structural Desig	Client: <u>Client No 1</u>		18 of
Carlo Sigmun	d Location: Location No 1		
Your Company Name here	Made by: CS	Date: 25/05/2019	Job No: 1
Company address mail@domain.com	Checked: <u>CS</u>	Revision: CS	
Mode 2 resistance (rows 2 + 3)			
$F_{T,2,Rd} = \frac{2M_{pl2,Rd} + n\sum F_{t,Rd}}{m+n}$			
where:			
F _{t,Rd} = 203 kN			
$\Sigma F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$			
$M_{pl,2,Rd} = \frac{0.25 \sum l_{eff,2} t_r^2 f_{y,p}}{\gamma_{M0}}$			
Here, as $I_{eff,2} = I_{eff,1}$:			
M _{pl,2,Rd} = M _{pl,1,Rd} = 15,4 kNm			
$F_{T,2,Rd} = \frac{2M_{p,1,2,Rd} + n\sum F_{t,Rd}}{m+n} = (2 \times 15,4 \times 10^3 + 48,2)$	2 x 813)/(38,6 + 48,2) = 808 kN		
Mode 3 resistance (bolt failure) (rows 2 + 3)			
$F_{T,3,Rd} = \sum F_{t,Rd} = 4 \times 203 = 813 \text{ kN}$			
Resistance of end plate in bending			
$F_{t,ep,Rd} = min[F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd}] = min[2.034; 808]$; 813] = 808 kN		EN 1993-1-8 6.2.4.1(6)
Beam web in tension			
This verification is not applicable as the beam flange (si	tiffner) is within the tension length.		(*)
Summary: resistance of bolt rows 2 and 3 combined	d		
Resistance of bolt rows 2 and 3 combined, on the beam	n side, is:		
End plate in bending: Therefore(*), on the beam side:	$F_{t,ep,Rd} = 808 \text{ kN}$ $F_{t,2-3,Rd} = F_{t,ep,Rd} = 808 \text{ kN}$		
The resistance of bolt row 3 on the beam side is therefore			
$F_{t_{2,b,Rd}} = F_{t_{2-3,Rd}} - F_{t_{2,Rd}} = (808 - 321) = 487 \text{ kN}$			SHEET 12
Resistance of bolts rows 2 and 3 combined, on the colu	mn side, is:		
Column flange in bending: $F_{t,fc,Rd}$ = 691 kNColumn web in tension: $F_{t,wc,Rd}$ = 1.096 kN	Therefore, on the column side: I	F _{t2-3,Rd} = 691 kN	SHEET 16 SHEET 16
The resistance of bolt row 3 on the column side is there	fore limited to:		
$F_{t_{3,b,Rd}} = F_{t_{2}-3,Rd} - F_{t_{2,Rd}} = (691 - 321) = 370 \text{ kN}$			
Summary: resistance of bolt row 3			
Resistance of bolt row 3 is the smallest value of: Column flange in bending:	F _{t.fc.Rd} = 398 kN		SHEET 5/12
Column web in tension: Beam web in tension:	$F_{t,wc,Rd}$ = 790 kN		SHEET 6/12 SHEET 14
End plate in bending:	$F_{t,wb,Rd}$ = 673 kN $F_{t,ep,Rd}$ = 407 kN		SHEET 10
(cont'd)			

Your Logo		ROCODES EADSHEETS ctural Design	Client:	Project No 1 Client No 1 Location No 1			Sheet: <u>19 of 23</u>
Your Company Nam Company address mail@domain.com	ne here	o Sigmund	Made by:	CS	Date: <u>25/05/</u> Revision: CS	2019	Job No: <u>1</u>
(cont'd) Column side, as part Column side, as part Beam side, as part o	t of a group with 2:	& 1:		F _{t3.c.Rd} = 293 kN F _{t3.c.Rd} = 370 kN F _{t3.b.Rd} = 487 kN			SHEET 16 SHEET 18 SHEET 18
Therefore, the resist		s:		$F_{t3,Rd}$ = 293 kN.			
SUMMARY OF TEN	ISION RESISTAN	CES					
			ows may be su	mmarized in tabular form,	as shown below.		
Resistances of row			,	,			
	Column flange	Column web	End plate	Beam web	MIN	Effect. resist.	
ROW 1, alone	398	790	377	N/A	377	377 (min)	ROW 1
ROW 2, alone ROW 2 + 1	398 698	790 1130	407 N/A	673 N/A	398 698	(min)	
ROW2 (effect.)	030	1130	N/A		(698 - 398)	300 (min)	ROW 2
ROW 3, alone ROW 3 + 2 + 1	398 991	790 1435	407 N/A	673 N/A	398 991	. ,	
ROW 3 (effect. a) ROW 3 + 2	691	1096	808	N/A	(991 - 698) 691	293	
ROW 3 (effect. b)					(691 – 321)	370 293	ROW 3
COMPRESSION ZO	NE T-STUBS					(min)	
Column web in tran	sverse compress	sion					STEP 2
The design resistance	ce of an unstiffed c	olumn web in transver	se compressio	n is determined from:			
$\textbf{F}_{c,wc,Rd} = \frac{\omega \textbf{k}_{wc} \textbf{b}_{eff,c,wc}}{\gamma_{M0}}$	_c t _{wc} f _{y,wc}	(crushing resista	ince)				EN 1993-1-8 6.2.6,2(1) Eq. (6.9)
but:							
$F_{c,wc,Rd} \le \left(\frac{\omega k_{wc} b_{eff,c,}}{\gamma_M}\right)$	$\frac{\mathbf{w}_{c} \mathbf{t}_{wc} \mathbf{f}_{y,wc}}{\mathbf{h}_{0}} \left(\frac{\gamma_{M0}}{\gamma_{M1}} \right) \mathbf{f}_{M1}$	buckling resista	nce)				
For a bolted end plat							EN 1993-1-8
		$_{b} + 2s_{f} + 5 (t_{fc} + s) + s_{p}$					Eq. (6.11)
		. Thus: s = r _c =					SHEET 2
s_p is the length obtain	ned by dispersion	at 45° through the end	plate:				
		Da 4		$0.5s_p = 25 r$ $t_p = 25 r$	nm	<u>,</u>	SHEET2 "
0.5sp		Beam flange		h _p = 670 s _f = 12 r)	
tp	- s _f	t 'C		$t_{fc} = 20, t_{fb} = 15, t_{fb}$			
^て fc →	End-plate						

Your Logo SPREADSHEETS Structural Design Carlo Sigmund	Project: Project No 1 Client: Client No 1 Location: Location No 1		
Your Company Name here Company address mail@domain.com	Made by: CS Checked: CS	Date: 25/05/2019 Revision: CS	Job No: <u>1</u>
$s_p = 2t_p = 2 \times 25 = 50 \text{ mm}$			
Verify that the depth of the end plate (h_{p}) is sufficient to allow the		imum h _p required is:	
$h_p \ge e_x + x + h_b + s_f + t_p = (50 + 40 + 533, 1 + 12 + 25) = 660, 7$	1 mm		
h _p = 670 mm			SHEET 2
As 670 mm \geq 660,1, the depth of the end plate is sufficient.			[Satisfactory]
Therefore:			
$b_{eff,c,wc} = t_{fb} + 2a_p v2 + 5 (t_{fc} + s) + s_p = t_{fb} + 2s_f + 5 (t_{fc} + s) + s_p$	= 15,6 + 2 x 12 + 5 x (20,5	+ 12,7) + 50 = 255,6 mm.	
$\boldsymbol{\rho}$ is the reduction factor for plate buckling			EN 1002 1 9
If $\overline{\lambda_{p}} \leq 0.72$ \Rightarrow $\rho = 1.0$			EN 1993-1-8 Eq. (6.13a)
$\overline{\lambda_p} = 0.2$			EN 1993-1-8
If $\overline{\lambda_{p}} > 0.72 \implies \rho = \frac{\overline{\lambda_{p}} - 0.2}{\left(\overline{\lambda_{p}}\right)^{2}}$			Eq. (6.13b)
$\overline{\lambda_p}$ is the plate slenderness:			
$\overline{\lambda_{p}} = 0.932 \sqrt{\frac{b_{\text{eff.c.wc}} d_{wc} f_{y.wc}}{E t_{wc}^{2}}} = -0.932 \text{ x } \sqrt{\{(255, 6 \text{ x } 200, 3 \text{ x } 2 \text{ s } 0, 3 \text{ s } 2 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 \text{ s } 1 \text{ s } 0, 3 \text{ s } 1 s $	265)/(210 x 10 ³ + 12,8 ²)} = 0,59	9 [-]	EN 1993-1-8 Eq. (6.13c)
As 0,59 mm ≤ 0.72 Eq. (6.13a) gives:			
ρ = 1,00 [-]			
ω is determined from Table 6.3 based on β (see sheet). The equation to use to calculate ω depends on β . As before, w	with β = 0,00 [-] therefore	fore: ω = 1,00 [-]	SHEET 6
			EN 1993-1-8
k_{wc} is a reduction factor that takes account of compression in the Here, it is assumed that $\ k_{wc}$ = $\ 1,00$ [-]	ie column web.		Note to 6.2.6.2(2)
$F_{c,wc,Rd} = \frac{\omega k_{wc} b_{eff,c,wc} t_{wc} f_{y,wc}}{\gamma_{M0}} = (1,00 \times 1,00 \times 255,6 \times 12,8 \times 10^{-10})$: 265/1,0)/10³ = 867 kN		
$\left(\frac{\omega \mathbf{k}_{wc} \mathbf{b}_{eff,c,wc} \mathbf{t}_{wc} \mathbf{f}_{y,wc}}{\gamma_{M0}}\right) \left(\frac{\gamma_{M0}}{\gamma_{M1}}\right) \rho = 867 \text{ x} (1,00/1,00) \text{ x} 1,00 =$			
Therefore:			
F _{c,wc,Rd} = 867 kN (crushing resistance governs).			
Beam flange and web in compression			
The resultant of the design resistance of a beam flange and ad	jacent compression zone of th	e web is determined using:	EN 1993-1-8 6.2.6.7(1)
$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h - t_{a}}$			
u, w, norm h - t _{fb}			Eq. (6.21)
where:			
$M_{\mathrm{c},\mathrm{Rd}}$ is the design resistance of the beam			
At this stage, assume that the design shear force in the beam of	does not reduce $M_{c,Rd}$.		
Therefore:			
$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h_b - t_{fb}} \approx 1.3 \ \frac{b_b t_{fb} \left(h_b - t_{fb}\right) f_{y,b} \ / \ \gamma_{M0}}{h_b - t_{fb}} = 1.3 \ \frac{f_{y,b}}{\gamma_{M0}} b_b t_{fb}$	(approximated,	conservative)	

Your Logo SPREADSHEETS Structural Design Carlo Sigmund	Client:	Project No 1 Client No 1 Location No 1	Sheet: 21 of 23
Your Company Name here Company address mail@domain.com	Made by: Checked:	CS Date: 25/05/2019 CS Revision: CS	Job No: 1
$F_{c,fb,Rd} = 1.3 \ \frac{f_{y,b}}{\gamma_{M0}} b_b t_{fb} = -1.3 \ x \ (275/1,0) \ x \ 209,3 \ x \ 15,6 = 1.16$	67 x 10³ N = 1.	167 KN	
Summary: resistance of compression zone			
Column web in transverse compression:		F _{c,wc,Rd} = 867 kN	
Beam flange and web in compression:		F _{c,fb,Rd} = 1.167 kN	
<u>Compression resistance:</u> F _{c,Rd} = min[F _{c,wc,Rd} ; F _{c,fb,Rd}] = min[867; 1.167] = 867 kN			
Resistance of column web panel in shear			STEP 3
The plastic shear resistance of an unstiffened web is given by	:		EN 1993-1-8
$V_{wp,Rd} = \frac{0.9f_{y,wc}A_{vc}}{\gamma_{wp}\sqrt{3}}$			6.2.6.7(1) Eq. (6.7)
and opposite. MOMENT RESISTANCE EFFECTIVE RESISTANCE OF BOLTS ROWS			STEP 4
Fc,(crushing)		Ft1,Rd Ft2,Rd Ft3,Rd Fc,Rd	
The resistances of each of the three bolt rows in the tension ze	one are:		SHEET 19
F _{t1.Rd} = 377 kN (for ROW 1)			
F _{12,Rd} = 300 kN (for ROW 2)			
F _{13,Rd} = 293 kN (for ROW 3)			
The UK NA states that the effective resistances should be red $1.9F_{t,\text{Rd}}$	luced when eit	ther the resistance of one of the higher rows exceeds	UK NA
(here: 1.9 $F_{t,Rd}$ = 1,9 x 203 = 386 kN \geq 377 mm)	(no reduc	tion is necessary according to UK NA).	SHEET 5
or (no reduction is also necessary):			Note
$t_{p} > \frac{d}{1.9} \sqrt{\frac{f_{ub}}{f_{y,p}}} \qquad \text{or} \qquad t_{r_{c}} > \frac{d}{1.9} \sqrt{\frac{f_{ub}}{f_{y,c}}}$			

EUPOCODES	Project	Project No. 1		Sheet
Your Logo SPREADSHEETS Structural Design	Flojeci.	Project No 1		
Structural Design	Client:	Client No 1		
Carlo Sigmund	Location:	Location No 1		
Your Company Name here	Made by:	CS	Date: 25/05/2019	Job No: <u>1</u>
Company address mail@domain.com	Checked:	CS	Revision: <u>CS</u>	<u> </u>
Reduction do Tension Row Force				NOTE
The tension forces in the bolts rows and the compression force the beam. The forces cannot exceed the compression resistan web panel. When the sum of the effective design tension resis forces must be determined that satisfies equilibrium. To achiev resistances should be reduced from the values calculated in st until equilibrium is achieved.	nce of the join tances ∑F _{ti,Rc} ve a set of bo	t, nor, where applicable a exceeds (F _{c,Rd} – N _{Ed}), It row forces that is in each	, the shear resistance of the an allocation of reduced bot quilibrium, the effective tension	
This allocation achieves the maximum value of moment resista	ance that can	be realised.		
MOMENT RESISTANCE OF JOINT				
The moment resistance of the beam to column joint $(M_{j,Rd})$ matrix	y be determir	ned using:		EN 1993-1-8 6.2.7.2(1)
$\mathbf{M}_{j,\text{Rd}} = \sum_{r} \mathbf{h}_{r} \mathbf{F}_{\text{tr},\text{Rd}}$				Eq. (6.25)
Taking the centre of compression to be at the mid-thickness of	f the compres	sion flange of the beam	1:	
$h_{r1} = 565 \text{ mm}$ $h_{r2} = 465 \text{ mm}$	h _{r3} = 37	5 mm		
Thus, the moment resistance of the beam to column joint is:				
$M_{j,Rd} = \sum_{r} h_{r} F_{tr,Rd} = h_{r1} F_{t1Rd} + h_{r2} F_{t2Rd} + h_{r3} F_{t3Rd} =$				
= (565 x 377 + 465 x 300 + 375 x 190)/10³ = 424 kNm.				
VERTICAL SHEAR RESISTANCE				
Resistance of bolt group				
The shear resistance of a non-preloaded M24 class 8.8 bolt in	single shear	is:		
F _{v,Rd} = 136 kN.				
$F_{b,Rd}$ = 259 kN (end bolts in 20,5 mm ply, bearing resistance).				
Hence 135,6 kN governs: $F_{Rd} = min[F_{v,Rd}; F_{b,Rd}] = min[13]$	86; 259] = 136	3 kN		
The shear resistance of the upper rows may be taken conservatively as 28% of the shear resistance without tension (this assumes that these bolts are fully utilized in tension) and thus the shear resistance of all 4 rows is:				STEP 5
V _{j,Rd} = (2 + 6 x 0.28) x 136 = 3.68 x 136 = 499 kN.				
WELD DESIGN The simple approach requires that the welds to the tension flan compression flange is of nominal size only, assuming that it ha	•		-	
BEAM TENSION FLANGE WELDS A full strength weld is provided by symmetrical fillet welds with	a total throat	thickness at least equa	al to the flange thickness.	
Required throat size: $t_{tb}/2 = 15,6/2 = 7,8$ mm. Weld throat provided: $a_f = 12/\sqrt{2} = 8,5$ mm, which is ac	lequate.			
BEAM COMPRESSION FLANGE WELDS Provide a nominal fillet weld either side of the beam flange. Ar	·	ngth fillet weld will be sa	atisfactory.	
BEAM TENSION FLANGE WELDS				
For convenience, a full strength weld is provided to the web:				1